Hypoxia and Hydrology

* Generation of hypoxic conditions can be a reasonable metric for measuring ESPC success
* There are many physical causes at time scales from weeks to decades
* Observations and events are extensive
* Hypoxia resulting from eutrophication is difficult
* Watershed nutrient load runoffs are difficult to predict
* Biological processes are difficult to predict

* There are modulating physical factors that are predictable



Diaz, Rosenberg, Science 2008

Two types of hypoxia:

* Eutrophication — driven by stimulating biological growth and
subsequent decomposition by bacteria that deplete oxygen

* Requires land chemical composition

* Harmful Algal Blooms result, harmful in either producing
toxins or by resulting in oxygen depletion

* Prediction requires biological system and oxygen utilization
models

* Physical processes modulate the hypoxia

* Oxygen Minimum Zones (OMZ) — oxygen minima at depth (100 -
1000m) upwelled along coasts

* Mainly physically driven upwelling generates hypoxia



Diaz, Rosenberg, Science 2008

Documented dead zones relative to population density
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Conkright et al., World Ocean Database, NESDIS, 2002

Oxygen Minimum Zones (OMZs) in slowest moving waters Karstensen et al. 2008).
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Keeling, Kortzinger, Gruber, Annual Reviews 2010

Long term cycles are dynamically driven

A range of mechanisms have been proposed Long perlod cycles
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Grantham, Chan, Nielsen, Fox, Barth, Huyer, Lubchenco, Menge,
Nature 2004

Hypoxic zone observed off Oregon coast, Intermittent events

summer 2002
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Grantham, Chan, Nielsen, Fox, Barth, Huyer, Lubchenco, Menge,
Nature 2004
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Conkright et al., World Ocean Database, NESDIS, 2002

Oxygen Minimum Zones (OMZs) in slowest moving waters Karstensen et al. 2008).
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Morales, Hormazabal, Blanco, J. Marine Res., 1999

Similar effects off Chile related to ENSO
Shoaling of oxycline (1 ml / liter) during cold El Nino phase
relative to warm phase
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Wang, Justic, Continental Shelf Research, 2009

Louisiana hypoxic dead zone reoccurs annually

Stratification affects hypoxia by inhibiting surface and
bottom water mixing

Events that affect stratification change hypoxic conditions

Ameliorating
events
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Wang, Justic, Continental Shelf Research, 2009
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Rabalais, Turner, Diaz, Justic, Ices J. Marine Sciences, 2010

Hurricanes ventilate waters and induce
mixing that disrupts hypoxia
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Balsamo, Viterbo, Beljaars, Van Den Hurk, Hirschi, Betts, Scipal, J.
Hydrometeorology, 2009

(a) Schematics of the land surface

* Tiled ECMWEF Scheme for Surface
Exchanges over Land (TESSEL)

* Hydrology-TESSEL, H-TESSEL
includes variable soil texture, soil
hydraulic parameterizations, and
runoff effects

TESSEL

* Implemented not to account for
moisture and heat exchanges with
atmosphere but for water
movement and runoff effects

H-TESSEL

* 25km global resolution




Balsamo, Viterbo, Beljaars, Van Den Hurk, Hirschi, Betts, Scipal, J.
Hydrometeorology, 2009

Sahelian Energy Balance Experiment (SEBEX; Wallace et al. 1991)
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HTESSEL allows sandy soil that leads to much lower soil moisture than uniform medium
texture soil of original TESSEL

Evaporation performance is very similar
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Balsamo, Viterbo, Beljaars, Van Den Hurk, Hirschi, Betts, Scipal, J.
Hydrometeorology, 2009

AGG experiment (Boone et al. 2004)
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HTESSEL runoff represents high frequency variability better
A significant issue is connection from grid cell runoff to river routing

A crude routing scheme of 100km/day over the shortest path from grid cell to outflow was

implemented
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Surface Water Ocean Topography

1. The Problem
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Heisler, Glibert, Burkholder, Anderson, Cochlan, Dennison, Dortch,
Gobler, Heijl, Humphries, Lewitus, Magnien, Marshall, Sellner,
Stockwell, Stoecker, Suddleson, Harmful Algae, 2008

2003 EPA meeting consensus

(1) Degraded water quality from increased nutrient pollution promotes the development and
persistence of many HABs and is one of the reasons for their expansion in the U.S. and other
nations;

(2) The composition—not just the total quantity—of the nutrient pool impacts HABs;
(3) High-biomass blooms must have exogenous nutrients to be sustained;
(4) Both chronic and episodic nutrient delivery promote HAB development;

(5) Recently developed tools and techniques are already improving the detection of some HABs,
and emerging technologies are rapidly advancing toward operational status for the prediction of
HABs and their toxins;

(6) Experimental studies are critical to further the understanding about the role of nutrients in
HABs expression, and will strengthen prediction and mitigation of HABs; and

(7) Management of nutrient inputs to the watershed can lead to significant reduction in HABs.
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Glibert, Allen, Bouwman, Brown, Flynn, Lewitus, Madden, J. Marine
Systems, 2010

Modeling of HABs and eutrophication: Status, advances, challenges

HAB prediction requires:

* Loading models of nutrients across watersheds from land and air
 Agricultural and aquacultural practices

* Precipitation

* Land geometry, physical properties

* Retentiveness of nutrients in local waters

* Rates and paths of nutrient consumption

* Plasticity of nutrient paths and food web
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Hypoxia and Hydrology

* Generation of hypoxic conditions can be a reasonable metric for measuring ESPC success
* There are many physical causes at time scales from weeks to decades
* Observations and events are extensive
* Hypoxia resulting from eutrophication is difficult
* Watershed nutrient load runoffs are difficult to predict
* Biological processes are difficult to predict

* There are modulating physical factors that are predictable
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ESPC demonstration

* Oxygen Minimum Layer (OML) is a result of biology, and hypoxia induced by OML
is very physically driven across a range of time scales

* Oxygen content is affected by long term cycles

* OML-driven hypoxic events are physically driven

* Physical events affect eutrophication driven hypoxia by altering stratification

* Long term cycles affecting stratification will affect eutrophication driven hypoxia

* Land models incorporating runoff, hydrology and river routing are becoming
mature

* Freshwater flow from land is a strong modulator on stratification

* SWOT provides a developing science community for hydrology

* Recommend focusing ESPC demonstration on physical aspects of hypoxia
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Questions
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Grantham, Chan, Nielsen, Fox, Barth, Huyer, Lubchenco, Menge,
Nature 2004
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Stumpf, Tomlinson, Clakins, Kirkpatrick, Fisher, Nierenberg, Currier,

Wynne, J. Marine Systems, 2009

Nowcast/identification heuristic model

Chlorophyll
anomaly
Season
Geography

Size

Shape
Upwelling/
winds
Respiratory
Cell counts

>1pg L'

Aug-Jan (or during persistent HAB)

Pinellas to Collier Counties (unless know bloom is tracked
outside this area)

>30 km?

Patch, not coast-wide

>20 km onshore transport

Impact reported with onshore winds
Used for subsequent confirmation

Present state of HAB forecasting

e Uses satellite chlorophyll
observations

» Applies local conditions lookup
table

* Heuristic transport based on
forecast winds

* Site-specific due to local nutrient
outflows and biological processes
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Turner, Rabalais, Swenson, Kasprzak, Romaire, Marine Env. Res., 2005

Eutrophication and harmful blooms require
extensive additional information

Statistical models based on direct
observations have been constructed to
relate oxygen concentration to nutrient

loads
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Balsamo, Viterbo, Beljaars, Van Den Hurk, Hirschi, Betts, Scipal, J.
Hydrometeorology, 2009

Boreal Ecosystem Research and Monitoring Sites (BERMS) site located in a Canadian
boreal Old Aspen forest (central Saskatchewan) has a high soil water retention
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